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Take Home Message

- Static and dynamic charge and spin correlations are
at the center of not only manganite physics but of
transition metal oxide science.

— Resurgence of manganite physics is partially due to better
neutron and X-ray scattering techniques that allowed us to
find evidence for lattice/spin polarons.

- Time-of-flight techniques offer unique opportunities to

probe these materials.

— Complexity requires the survey of large volumes of
reciprocal space and ability to deal adeqiately with
dynamical effects.
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Counts

Polaron Scattering in Manganites

= Primary technique used is single crystal
Neutron and X-ray scattering.

= Deviations from average crystal structure
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Orbital and Charge Ordering in Manganites
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Charge and Orbital Ordering in LaSr,Mn,0,
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Argyriou et al. PRB 61, 15269 (2000)
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Charge and Orbital C

orrelations in FM

La, ,Sr, gMn,0;
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CE-Correlations in La, ,Sr, sMn,0, (x=0.4)
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Dynamic Polaron Correlations
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Polaron-Correlations in La, ,Sr, ;Mn,0,
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Quasielastic Intensity Elastic Intensity

I' (meV)

Polaronic Liquid to Glass Transition

* T>T*
— Dynamic CE-correlations
— Quasielastic (QE) width decreases linearly with T

* T<I<T*
— CE coherence length does not diverge

300

400

0 * varies from 10-20A
140 — CE-correlations freeze
* Elastic scattering increases below T*
100 * QE scattering decreases below T*
60 — QE width is ~constant (non-zero)
20 — Some dynamic CE-correlations are present
* T<T,
1o — In metallic state elastic and dynamic polaron-
12 correlations are not observe (no electron-phonon
. coupling)
n Argyriou et al. PRL 89,036401 (2002).
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Frustration in Manganites
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In geometrical frustrated systems,
— Critical dynamics are 2nd order-like for T>Tg.

— Co-existence of both static and dynamic correlations.

— At T, non-divergent order parameter.




What we are actually measuring ?

Dynamic CE correlations
T

- Above T* quasielastic scattering indicates that CE-type
correlations have a finite lifetime.
— No evidence for diffusion of CE-type correlations.
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What we are actually measuring ?

Dynamic Lattice Relaxation
T

» Quasielastic Huang scattering indicates a dynamic lattice
fluctuations associated with hoping e, charges.




DNS, TOF mode
FZ-Juelich




Magnetic Rods in La, ,Sr, ;Mn,0,
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Osborn et al. PRL 81,3964 (1998).




Spin Correlations in Layered Manganites

Intensity (counts/minute)
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* Energy integrated scans along | show modulations in
the magnetic diffuse scattering.

- The variation of intensity is modeled by spin-canting
between MnO, sheets.

- Indicative of the competition between super- and
double exchange. Osborn et al. PRL 81,3964 (1998).



Spin Correlations in Layered Manganites

DNS, TOF mode
.. | FZ-Jiielich

> Energy (meV)

H (r.l.u)

» L (r.l.u) 300 K



Spin Correlations in Layered Manganites
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Spin Correlations in Layered Manganites
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Some Lessons |
-

- Short range correlations are key to the physics of many
materials.
— Needs for optimized diffuse scattering instrumentation
— Low background
— High efficiency detectors
— Large reciprocal space coverage
— CCD for X-rays
— TOF instruments for neutrons
— Good Q resolution
— X-rays better than neutrons
— Energy discrimination
— Very important background/static correlation function

— For total scattering one needs to be aware of what is
measured




Some Lessons Il
-

- The time scale of correlations is very important and some
effort should be made to probe it in an experiment.

— X-ray scattering provides time averaged information (integration
window ~1eV).

— Energy integrated measurements provide important insights, but
not the whole picture.

— Can not see a freezing transition.

— For neutron scattering, analyzers can be used for inelastic
scattering rejection to provide the static correlation function.

— TAS is not an efficient way to measure diffuse scattering
— Need arrays analyzer/detectors
— Possibilities with statistical choppers....

— Alternatively, measure everything, sort it out later, using direct
geometry time of flight techniques.




Diffuse Scattering In Rectors
E2 at Hahn-Meitner Institut
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Counts

Polaron Scattering in La, ,Sr, sMn,0,
Using SCD at LANSCE
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MiDa$S for Long Wavelength Target Station

at SNS

Radial Collimator

Incident Beam
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Frame Polarizing
Choppers Cavity

30 m

Decoupled Liquid Methane Moderator
Effective rep rate 10Hz

Dd/d=0.2 % at backscattering.

Single crystal and powder samples

Two dimensional
position sensitive
detectors



TOF/Monochromator Combination
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Excellent survey instrument in Q and ® (Aw=1-20 meV)
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Conclusions
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* In La, ,Sr, gMn,O-, we find evidence of a glass
transition at T".
— T* is the temperature were polaronic correlations freeze
— Fundamental Temperature Scale in CMR manganites.

- The insulating state between T .<T<T™" in this
manganite arises from a frozen local scale charge
and orbitaly ordered state.

- Diffuse scattering has been critical in uncovering the
physics of manganites.

 Quasileastic scattering gives unique insight into
polaron dynamics.
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* Instrumentation

— X-ray and neutron diffuse scattering are complementary.
« Should be used together whenever possible.

— Neutrons instrumentation should focus on the better energy
resolution that is achievable compared to X-rays scattering.

— At SNS one can go beyond just measuring the static
correlation function.
« Monochromator/pulsed beam combination
« Can be quite competitive compared to correlation shopper

- Can bridge the gap at low energies between a diffractometer
and other TOF spectrometers (like MAPS/MARI).




